수소 원자(H)는 가장 간단한 원자 시스템으로, 원자를 기술하는 물리학이 맞는지 테스트하는 기본 예제이다(<수소로 읽는 현대 과학사> 참조). 그리고 가장 간단한 분자 시스템은 이 수소 원자 두 개가 모여 만들어낸 수소 분자 H2로, 역시 분자를 기술하는 물리학의 초석이 된다. 지난 주 <피지컬 리뷰 에이(Physical Review A)>에 실린 논문에서, 저자들은 이 수소 분자의 에너지를 더 정확하게 예측할 수 있는 상대론적 보정항을 계산하였다. 아래에 초록과 서론을 번역한다.

수소 분자의 바닥 전자 상태에 대한 상대론적 보정

초록
우리는 수소 분자의 바닥 전자 상태에 관한 상대론적 보정의 선도항(leading term)을 다시 계산한다. 이 계산은 전자간 첨단 조건(interelectronic cusp condition)을 만족하는 명시적 상관 함수(explicitly correlated functions)를 사용한 변분법(variational method)으로 이루어진다. 이 계산 접근법 덕분에 수치상의 정확성을 조절할 수 있었고, 이로써 약 여덟 자리의 유효 숫자를 얻었다. 더 중요한 것은, 새로 계산된 이론 에너지가 알려진 실험값과 어긋난다는 점으로, 이로써 우리는 아직 알려지지 않은 상대론적 반동 보정이 기존의 예상보다 더 클 것이라는 결론을 내릴 수 있다.

서론
수소 분자의 이론 연구는 분자 양자역학의 주춧돌이다. 그 단순함 덕분에, 그 정확도는 모든 분자 중에서 가장 정확하게 구해져 있고, 동시에 아직 큰 폭의 향상을 기대할 수 있다. 이 H2의 이론적 예측이 갖고 있는 높은 정확도로 인해 양자 전기역학(quantum electrodynamics; QED)의 더 정교한 테스트가 가능해졌고, 가설적인 상호작용의 한계를 더 정확하게 예측할 수 있게 되었다1. 게다가, 10-7 cm-1의 정확도 단계에서 해리 에너지(dissociation energy)는 양성자의 전하 반지름에 크게 의존하므로, 소위 양성자 반지름 수수께끼(proton radius conundrum)에 대한 해결책이 될 수 있다2. 이는 비상대론적 에너지 뿐 아니라 상대론적 선도 보정항 O(α2), QED 보정항 O(α3), 더 고차의 보정항들인 O(α4)와 O(α5)에 대한 정확한 계산을 필요로 한다. 사실, 비상대론적 에너지는 참고문헌 3에서 밝힌 바와 같이, 이미 10-7 cm-1의 정확도까지 계산할 수 있다. O(α4) 항의 경우 매우 최근에 명시적 상관성 가우스 함수(explicitly correlated Gaussian function; ECG function)에 1 + r12/2 전인자를 포함시켜 전자간 첨단 조건을 정확히 만족시킨 방법(rECG)으로 계산된 바 있다4. 이 논문에서 우리는 rECG 함수를 사용하여 상대론적 선도 보정항 O(α2)을 계산한 결과를 보고하며, 참고문헌 5에 수록된 기존 결과들이 수치상의 불확정성을 너무 작게 추산했다는 결론을 내린다. 우리의 방법으로 수치상의 정확도가 서너 자릿수 향상되는데, 이하에서 우리 계산 방법론을 자세하게 기술한다.


+ 최신 글