네이처 뉴스를 읽다가 무심결에 지나친 논문을 다시 살펴 보았다. 학부 때 상대론적 양자역학 연구실에서 배웠던 이야기들이 새록새록 떠오른다. <네이처> 뉴스와 더불어 해당 논문의 초록을 번역하였고, APS Physics에 실린 좀 더 상세한 뉴스에서 이해를 도울 만한 그림을 따왔다.


<네이처> 알려진 제일 무거운 원소의 전자들은 틀을 깬다

https://www.nature.com/articles/d41586-018-01674-2


전자들은 일반적으로 구별된 껍질 안에서 원자핵 주위를 돌지만, 계산에 따르면 지금까지 발견된 가장 무거운 원소인 오가네손의 외각 전자들은 그 대신 기체 형태로 핵 주위를 돌지도 모른다.


오가네손은 빠르게 붕괴하기에 실험적으로 측정하기가 어렵다. 그 대신, 뉴질랜드의 매시 대학교 오클랜드 캠퍼스의 Peter Schwerdtfeger와 동료들은 오가네손 핵 주위에 있는 전자들의 에너지 준위를 계산했다. 더 높은 정확도를 얻기 위해, 연구진은 '상대론적 효과'로 알려진 요소를 고려하였다. 이 요소로 인해 이 원자의 높은 핵 전하가 더 가벼운 원소들에 비해 더 큰 영향을 미치게 된다.


연구진은 오가네손 안에서는 최외각 전자들의 궤도가 구별되지 않아 바깥 층이 거의 전자 기체처럼 된다는 것을 발견했다. 오가네손은 비활성 기체로 구분되고 있지만, 이 연구에 따르면 오가네손이 해당 족의 다른 구성원들과는 다르게 행동할 수 있으며, 심지어 상온에서 고체일 수도 있다.



<피지컬 리뷰 레터스> 오가네손의 전자와 핵자 국소화 함수들: 토머스-페르미 한계에 이르다

https://doi.org/10.1103/PhysRevLett.120.053001


초록

페르미온 국소화 함수들은 지금까지 발견된 가장 무거운 원소인 초중량 원소 오가네손(Og; oganesson)의 전자 및 핵자 껍질 구조 효과를 논하는데 사용되고 있다. 7p 전자 껍질의 스핀-궤도 갈라짐은 매우 크기에(~ 10 eV), Og는 더 가벼운 비활성 기체 원자들과 비교할 때, 꽤 큰 쌍극자 분극도와 더불어 원자가 영역에서 균일 기체와 유사한 거동을 보일 것으로 예상된다. Og의 핵자 국소성은 또한 원자가 영역에서 토머스-페르미 기체 거동으로의 전이를 겪을 것으로 예측되었다. 특별히 중성자에서 강하게 나타나는 이 효과는 단일 입자 오비탈의 높은 밀도에서 기인한다.



APS Physics 가장 무거운 원소는 특이한 껍질 구조를 가지고 있다

https://physics.aps.org/articles/v11/10


그림 1 오가네손은 주기율표에 가장 최근에 추가된 원소 중 하나이다. 이 무거운 원소(Og, 오른쪽 아래)의 전자 구조를 이론적으로 계산해 보니 전자들의 분포가 매끄럽다는 것이 알려졌다. 이는 상호작용하지 않는 입자들로 이루어진 기체에서 나타나는 거동이다. 이 균일한 거동은 더 가벼운 원소들인 제논(Xe, 오른쪽 위)이나 라돈(Rn, 오른쪽 중간)에서 관찰되는 껍질 구조와 대조를 이룬다.

화학자/물리학자로서 수소 원자는 항상 마음을 뛰게 한다. 이번 주 <사이언스>에는 수소 원자와 관련된 기초적인 물리량에 관한 논문이 실렸다. 아래에 두 편의 소개글과 초록, 그리고 그림 1을 번역해서 소개한다.

양성자는 얼마나 큰가?

양성자의 크기에 대해, 뮤온 수소의 분광 분석에서 얻어낸 값과 "일반적인" 수소의 기존 결과들을 평균하여 얻은 값 사이의 차이가 지난 7년간 물리학자들을 혼란스럽게 해왔다. 이제 Beyer et al.은 이 수수께끼의 실마리를 제시한다. 연구자들은 일반적인 수소에 대한 매우 정확한 분광 측정으로 양성자의 크기를 얻어냈다. 놀랍게도, 이 값은 동일한 방식으로 수행된 과거 측정값들의 평균과 일치하지 않았다. 또한 놀랍게도, 이 값은 뮤온 수소 실험에서 뽑아낸 값과 일치했다. 수수께끼를 푸는 일은 이제 과거 결과들이 새 결과와 어떻게 연결되어 있는지 이해하고 모든 실험에 내재된 계통 오차의 원인을 다시 검토하는 것부터 시작되어야 할 것이다.

양성자 반지름의 재검토

모든 원자의 원자핵은 양성자와 중성자로 구성되어 있고, 가장 간단한 원자인 수소는 단 하나의 양성자로 구성된 원자핵을 가지고 있다. 이 양성자의 반지름은 매우 작아 약 1 fm 가량 되며(1 fm는 10-15 m), 수소 원자의 반지름보다 6만 배 작다. 양성자는 이렇게 근본적인 입자이기 때문에, 그 크기를 측정하는 데 많은 노력을 기울여 왔다. 2010년 이후로 양성자의 크기는 이론가들과 실험가들을 모두 당혹스럽게 해왔다. 전자 대신 전자보다 200배 더 무거운 기본 입자인 뮤온이 양성자를 돌고 있는 특이 수소(exotic hydrogen)의 전이 주파수를 측정해보면, 양성자의 크기가 약 4% 작게 측정되는 것이다. 일반적인 수소 분광 분석 및 전자-양성자 산란 결과와 비교할 때 6σ 수준인 이러한 불일치는 "수소 크기 수수께끼"를 만들어 냈고, 그 해결책을 찾는 과정에서 격렬한 과학적 논쟁이 벌어졌으나 여태껏 확실한 결과를 얻지 못했다. Beyer et al.은 일반적인 수소의 발머 계열 방출선 중 하나인 2S-4P 전이 주파수를 측정한 결과를 제시한다. 이들이 스펙트럼으로부터 얻어낸 양성자 크기값은 뮤온 수소 분광 분석에서 얻어낸 값과 일치하고, 일반적인 수소에 대한 기존 측정 결과들 대부분과 불일치한다. (기존의 측정값들은 매우 많다!) 이들은 또한 자연의 상수 중 가장 정확하게 결정된 상수 중 하나인 뤼드베리 상수(Rydberg constant)가 문헌값과 3 시그마 이상 차이난다는 것을 발견했다.

수소 원자에서 얻어낸 뤼드베리 상수와 양성자 반지름

초록
"양성자 반지름 수수께끼"의 핵심에는 일반적인 수소 원자(H)와 뮤온 수소 원자(μp)에서 결정된 양성자의 근평균제곱 전하 반지름(rp) 간의 4 시그마 차이가 있다. 저온 수소 원자살을 사용하여 우리는 H의 2S-4P 전이 주파수를 측정하였고, 이로써 뤼드베리 상수 R = 10973731.568076(96) m-1rp = 0.8335(95) fm이라는 값을 얻었다. 우리가 얻은 rp 값은 기존의 H 세계 데이터보다 3.3 합성 표준 편차만큼 작지만, μp 값과는 잘 일치한다. 우리는 이웃의 원자 공명에서 기인하는 양자 간섭으로 발생하는 방출선 이동(line shift)을 제거할 수 있는 비대칭 맞춤 함수(asymmetric fit function)를 쓸 것을 제안한다.

그림 1: 뤼드베리 상수 R과 수소의 RMS 전하 반지름 rp
본 연구에서 얻어낸 rp 값(녹색 다이아몬드)과 μp 분광 분석에서 얻어낸 값(분홍색 띠와 보라색 사각형)은 일치한다. 우리는 H 분광 세계 데이터(파란 띠와 파란 삼각형)에 대해 3.3 합성 표준 편차만큼의 차이를, 기본 상수들에 대한 CODATA 2014 세계 조정(회색 육각형)에 대해서는 3.7 합성 표준 편차만큼의 차이를 발견했다. H 세계 데이터는 15개의 개별 측정값으로 이루어져 있다(검은 원은 광학 측정, 검은 사각형은 마이크로파 측정). H 데이터에 더하여, CODATA 조정값은 중수소 데이터(9개 측정값)과 탄성 전자 산란 데이터를 포함한다. rp 대신 R에 대해서도 거의 동일한 그래프가 얻어지는데, 이는 두 매개변수 간의 강한 상관성 때문이다. 이는 아래쪽 R 축에 나타나 있다.

이번 주 <네이처 물리학>에 물리학사 논문의 서평(?)이 실렸다. 요새야 보스-아인슈타인 응축을 양자통계역학의 대표적인 현상으로 배우지만, 사실 처음부터 그랬던 것은 아니었을 터. 그 과정에서 큰 기여를 한 Fritz London의 이야기다. 물리화학 공부를 하다보면 런던 힘이니 하이틀러-런던 이론이니 해서 이름을 많이 듣는 분인데, 보스-아인슈타인 응축에도 기여하신 줄은 몰랐다.


물리학의 역사: 양자역학이 커진 순간

https://doi.org/10.1038/nphys4255


양자기술 시대가 동터오면서, 우리는 양자역학 효과가 실용적인 장치에서 드러난다는 개념에 익숙하게 자라왔다. 하지만 인류가 단일 양자 존재를 분리하고 조작하며 측정하는 기술을 습득하기 전까지, 거시 차원의 양자 현상이라는 개념은 초유체성이나 초전도성과 같은 집단 거동을 보이는 무리에서 잘 정립되었다. 거시적인 파동 함수가 이러한 효과의 기반이라는 획기적인 깨달음은 Fritz London에 의해 1946년 도입되었는데, Daniela Monaldi는 London이 이전까지 예상하지 못했던 이러한 개념에 도달한 과정을 새로운 시각으로 통찰력 있게 재구성해내며, 그 시작점을 많은 변화에 흔들리던 삶 가운데 모은 아이디어들의 합성으로 설명한다(Stud. Hist. Philos. M. P. http://doi.org/cbsk; 2017).


London의 주요 업적을 목록으로 만든다면, Walter Heitler에 의해 체계화된 수소 분자의 양자역학 결합 이론에서부터, 자신의 동생 Heinz과 함께 개발한, 초전도체 내 전류밀도와 자기장 간의 현상론적 관계에 이르기까지 많고 다채로운 연구가 포함된다. 그는 말년에 측정 이론, 거대 분자, 초유체를 연구했고, 이 주제들은 1954년 그가 54세의 이른 나이로 세상을 떠날 때까지 그를 사로잡았다. 하지만 London의 삶은 또한 혼란으로 점철되어 있었다. 그는 나치가 발흥하면서 독일을 떠나야 했고, 옥스포드와 파리를 전전하다가 1939년 미국으로 이민왔다.


이 변화무쌍한 삶과는 상반되게, Monaldi는 거시적 양자 메커니즘이라는 아이디어의 시작을 "선구자적인 직관이나 미리 세운 계획의 목표가 아니라 차근차근 깨달음이 쌓인 결과"라고 기술한다. 그녀는 핵심적인 순간으로 London이 1937년 암스테르담에서 판데르 발스의 탄생 100주년을 기념해 열린 국제 학회에 참석한 시점을 꼽는다. 이 학회의 토론 주제 중에는 헬륨의 λ-전이가 있었고, 또한 George Uhlenbeck이 알베르트 아인슈타인의 보손 응축 연구에 대한 자신의 기존 비판을 철회하는 일이 있었다. London은 그 때부터 보스-아인슈타인 응축을 재구성하는 작업을 시작했고(이로써 그는 "순수하게 가상의 존재만 다루는" 사람이라는 평판을 얻었다고 느꼈다), 훗날 이것을 λ-전이와 연결시켰다(그는 이 연결에 대해 처음에는 강한 회의를 가지고 있었으나 László Tisza가 그를 납득시켰다).


Monaldi는 이 시기가 London의 경력에서 터닝 포인트가 되었다고 본다. 이로 시작된 개념의 형식화는 결국 초전도체, 초유체 헬륨과 보스-아인슈타인 응축을 통합하여 양자역학이 미시 영역에 갇혀 있는 것이 아니라 "직접적으로 거시 세계에 도달"할 수 있음을 증명하게 했다. London은 마침내 자신의 생각을 1946년 7월 영국 케임브리지에서 열린 학회에서 발표했는데, 이 학회는 세계 대전 이후 최초로 열린 큰 규모의 국제 물리학회로 대서양 양쪽의 더 넓은 커뮤니티를 다시 연결하는 것이었다.

수소 원자(H)는 가장 간단한 원자 시스템으로, 원자를 기술하는 물리학이 맞는지 테스트하는 기본 예제이다(<수소로 읽는 현대 과학사> 참조). 그리고 가장 간단한 분자 시스템은 이 수소 원자 두 개가 모여 만들어낸 수소 분자 H2로, 역시 분자를 기술하는 물리학의 초석이 된다. 지난 주 <피지컬 리뷰 에이(Physical Review A)>에 실린 논문에서, 저자들은 이 수소 분자의 에너지를 더 정확하게 예측할 수 있는 상대론적 보정항을 계산하였다. 아래에 초록과 서론을 번역한다.

수소 분자의 바닥 전자 상태에 대한 상대론적 보정

초록
우리는 수소 분자의 바닥 전자 상태에 관한 상대론적 보정의 선도항(leading term)을 다시 계산한다. 이 계산은 전자간 첨단 조건(interelectronic cusp condition)을 만족하는 명시적 상관 함수(explicitly correlated functions)를 사용한 변분법(variational method)으로 이루어진다. 이 계산 접근법 덕분에 수치상의 정확성을 조절할 수 있었고, 이로써 약 여덟 자리의 유효 숫자를 얻었다. 더 중요한 것은, 새로 계산된 이론 에너지가 알려진 실험값과 어긋난다는 점으로, 이로써 우리는 아직 알려지지 않은 상대론적 반동 보정이 기존의 예상보다 더 클 것이라는 결론을 내릴 수 있다.

서론
수소 분자의 이론 연구는 분자 양자역학의 주춧돌이다. 그 단순함 덕분에, 그 정확도는 모든 분자 중에서 가장 정확하게 구해져 있고, 동시에 아직 큰 폭의 향상을 기대할 수 있다. 이 H2의 이론적 예측이 갖고 있는 높은 정확도로 인해 양자 전기역학(quantum electrodynamics; QED)의 더 정교한 테스트가 가능해졌고, 가설적인 상호작용의 한계를 더 정확하게 예측할 수 있게 되었다1. 게다가, 10-7 cm-1의 정확도 단계에서 해리 에너지(dissociation energy)는 양성자의 전하 반지름에 크게 의존하므로, 소위 양성자 반지름 수수께끼(proton radius conundrum)에 대한 해결책이 될 수 있다2. 이는 비상대론적 에너지 뿐 아니라 상대론적 선도 보정항 O(α2), QED 보정항 O(α3), 더 고차의 보정항들인 O(α4)와 O(α5)에 대한 정확한 계산을 필요로 한다. 사실, 비상대론적 에너지는 참고문헌 3에서 밝힌 바와 같이, 이미 10-7 cm-1의 정확도까지 계산할 수 있다. O(α4) 항의 경우 매우 최근에 명시적 상관성 가우스 함수(explicitly correlated Gaussian function; ECG function)에 1 + r12/2 전인자를 포함시켜 전자간 첨단 조건을 정확히 만족시킨 방법(rECG)으로 계산된 바 있다4. 이 논문에서 우리는 rECG 함수를 사용하여 상대론적 선도 보정항 O(α2)을 계산한 결과를 보고하며, 참고문헌 5에 수록된 기존 결과들이 수치상의 불확정성을 너무 작게 추산했다는 결론을 내린다. 우리의 방법으로 수치상의 정확도가 서너 자릿수 향상되는데, 이하에서 우리 계산 방법론을 자세하게 기술한다.


+ 최신 글