네이처 뉴스를 읽다가 무심결에 지나친 논문을 다시 살펴 보았다. 학부 때 상대론적 양자역학 연구실에서 배웠던 이야기들이 새록새록 떠오른다. <네이처> 뉴스와 더불어 해당 논문의 초록을 번역하였고, APS Physics에 실린 좀 더 상세한 뉴스에서 이해를 도울 만한 그림을 따왔다.


<네이처> 알려진 제일 무거운 원소의 전자들은 틀을 깬다

https://www.nature.com/articles/d41586-018-01674-2


전자들은 일반적으로 구별된 껍질 안에서 원자핵 주위를 돌지만, 계산에 따르면 지금까지 발견된 가장 무거운 원소인 오가네손의 외각 전자들은 그 대신 기체 형태로 핵 주위를 돌지도 모른다.


오가네손은 빠르게 붕괴하기에 실험적으로 측정하기가 어렵다. 그 대신, 뉴질랜드의 매시 대학교 오클랜드 캠퍼스의 Peter Schwerdtfeger와 동료들은 오가네손 핵 주위에 있는 전자들의 에너지 준위를 계산했다. 더 높은 정확도를 얻기 위해, 연구진은 '상대론적 효과'로 알려진 요소를 고려하였다. 이 요소로 인해 이 원자의 높은 핵 전하가 더 가벼운 원소들에 비해 더 큰 영향을 미치게 된다.


연구진은 오가네손 안에서는 최외각 전자들의 궤도가 구별되지 않아 바깥 층이 거의 전자 기체처럼 된다는 것을 발견했다. 오가네손은 비활성 기체로 구분되고 있지만, 이 연구에 따르면 오가네손이 해당 족의 다른 구성원들과는 다르게 행동할 수 있으며, 심지어 상온에서 고체일 수도 있다.



<피지컬 리뷰 레터스> 오가네손의 전자와 핵자 국소화 함수들: 토머스-페르미 한계에 이르다

https://doi.org/10.1103/PhysRevLett.120.053001


초록

페르미온 국소화 함수들은 지금까지 발견된 가장 무거운 원소인 초중량 원소 오가네손(Og; oganesson)의 전자 및 핵자 껍질 구조 효과를 논하는데 사용되고 있다. 7p 전자 껍질의 스핀-궤도 갈라짐은 매우 크기에(~ 10 eV), Og는 더 가벼운 비활성 기체 원자들과 비교할 때, 꽤 큰 쌍극자 분극도와 더불어 원자가 영역에서 균일 기체와 유사한 거동을 보일 것으로 예상된다. Og의 핵자 국소성은 또한 원자가 영역에서 토머스-페르미 기체 거동으로의 전이를 겪을 것으로 예측되었다. 특별히 중성자에서 강하게 나타나는 이 효과는 단일 입자 오비탈의 높은 밀도에서 기인한다.



APS Physics 가장 무거운 원소는 특이한 껍질 구조를 가지고 있다

https://physics.aps.org/articles/v11/10


그림 1 오가네손은 주기율표에 가장 최근에 추가된 원소 중 하나이다. 이 무거운 원소(Og, 오른쪽 아래)의 전자 구조를 이론적으로 계산해 보니 전자들의 분포가 매끄럽다는 것이 알려졌다. 이는 상호작용하지 않는 입자들로 이루어진 기체에서 나타나는 거동이다. 이 균일한 거동은 더 가벼운 원소들인 제논(Xe, 오른쪽 위)이나 라돈(Rn, 오른쪽 중간)에서 관찰되는 껍질 구조와 대조를 이룬다.

베이커 선생은 지구 정복이 꿈인가 보다. 이제 심지어 바이러스의 프로토타입을 만드는 데까지 성공! 짤막하게 초록을 번역하고 조립체가 어떻게 조립되는지 보여주는 그림 1B를 첨부한다.


스스로의 RNA 유전체를 포함할 수 있는 설계된 단백질 조립체의 진화

https://doi.org/10.1038/nature25157


초록

복잡한 생화학 환경 속에서 진화하기 위해 겪는 어려움으로는 유전자형과 표현형을 연결하는 문제와 유전 물질을 보호하는 문제가 있는데, 생체 시스템들은 핵산을 단단히 포장함으로써 이 문제들을 우아하게 풀어낸다. 가장 간단한 예로서, 바이러스는 껍질 단백질(capsid)로 자신들의 유전체를 싼다. 비록 자연에 존재하는 이러한 시스템을 변형하여 친화성(tropism)을 바꾸거나 특정 단백질 및 펩타이드를 만들게 하는 연구들이 진행되기는 했으나, 모듈성을 포기하고 효율성을 추구해 온 수십억 년의 진화로 인해 바이러스 껍질 단백질을 고친다는 것은 쉽지 않다. 바이러스에서 기인하지 않은 단백질로 만들어진 합성 시스템은, 바이러스와 연관된 안전상의 위험 및 조작의 어려움을 피하는 한편, 약물 전달 및 다른 생체의학 응용 분야에 필요한 성질을 진화시키는 '빈 서판'을 제공할 수 있다. 이 연구에서 우리는 20면체 단백질 조립체이자 내부 막이 양전하를 띠어 자신의 전체 mRNA 유전체를 포장할 수 있는 핵 껍질 단백질(nucleocapsid)을 계산으로 설계하고 합성하였다. 우리는 이 핵 껍질 단백질이 바이러스와 유사한 성질을 진화로 얻을 수 있는지 확인하기 위해 대장균을 발현 숙주로 삼아 다양한 개체군을 만들었다. 몇 세대 진화를 시키자, 유전체 포장 효율(133배 이상), 혈액 속의 안정성(주사 후 6시간 뒤에 포장된 RNA가 살아남은 비율이 3.7% 미만에서 71%로), 체내(in vivo) 순환 시간(5분 미만에서 약 4.5 시간으로)이 눈에 띄게 향상되었다. 진화의 결과로 만들어진 합성 핵 껍질 단백질은 11개의 20면체 조립체 당 하나 꼴로 전체 RNA 유전체를 포함하는데, 이 비율은 재조합 아데노 부속 바이러스(adeno-associated virus) 벡터의 최고 기록과 유사하다. 이 결과는 단백질 조립체가 바이러스와 유사한 유전체 포장 및 보호 능력을 획득할 수 있는 단순한 진화 경로가 존재함을 보여준다. 그간 약물 전달 및 백신에의 응용을 위해 더 안전하고 효율적으로 바이러스를 조작하기 위한 '하향성' 접근법에 많은 노력을 들여 왔지만, 계산을 통해 합성 나노물질을 설계하고 진화를 통해 그들을 최적화할 수 있는 기법의 개발로 이제 프로그램성과 조작성에 많은 장점이 있는, 이에 보완적인 '상향성' 접근법이 가능해졌다.


<네이처>는 오랜만이네. 언어와 진화라니, 내가 좋아하는 두 주제가 다 있다! 그런데 이걸 생물학 카테고리에 넣어야 하나;;;


/* 시작하기 전에 번역에 대해 한 마디 하자면, drift는 목적 없이 떠다닌다는 의미로 일상 용어로는 부유(浮遊) 혹은 표류로 번역되는데, 유독 진화생물학에서는 genetic drift를 "유전자 부동(浮動)"이라고 번역한다. 아마도 일본어의 영향[1]으로 보이는데, 우리말로는 움직이지 않는다는 不動과 헷갈릴 소지가 있어서 별로 바람직한 번역어는 아니라고 생각한다. 더 나은 번역은 "유전적 표류" 정도가 될 것이다. 오늘 초록에서는 "drift"라는 단어가 두 가지 용법으로 쓰이는데, "genetic drift"는 기존의 번역어를 존중하여 "유전자 부동"으로 번역했지만, "stochastic drift"는 "확률 표류"로 번역했다. */


언어 변화의 진화적 동력들을 검출하다

https://doi.org/10.1038/nature24455


초록

언어와 유전자는 모두 그 형태를 복제할 때 변이될 가능성을 안고 세대를 거쳐 전파되면서 진화한다. 유전자 빈도수가 자연 선택이 일어나지 않는 상황에서도 유전자 부동에 의해 임의로 변화한다는 이해는 진화생물학의 주요한 진보였다. 확률 표류는 언어적 형태가 화자 사이에서 복제될 때 나타나는 임의성을 고려하면 언어에서도 일어나야 한다. 이 연구에서 우리는 언어 진화에서 선택에 대한 확률 표류의 크기를 정량화하였다. 우리는 12세기에서 21세기에 만들어진 텍스트에 주석을 달아 분류한 큰 말뭉치에서 뽑아낸 시계열 데이터를 이용하여 영어의 유명한 문법적 변화 세 가지, 즉 과거형 동사의 규칙화, 우언법(迂言法) 'do'의 도입, 동사 부정법의 변천을 분석하였다. 어떤 경우에는 선택이 확률 표류를 압도하는 것으로 나왔지만 다른 경우에는 그렇지 않았다. 구체적으로, 일부 과거형 동사에 대해서는 불규칙 형태에 대한 선택을 관찰할 수 있었고, 이는 아마도 시간에 따라 운율 양식의 선호도가 변화했기 때문으로 보인다. 우리는 흔히 쓰이지 않는 단어들에 대해서는 확률 표류가 더 강력함을 보였고, 이로써 왜 흔히 쓰이지 않는 단어들이 자주 쓰이는 단어들에 비해 더 잘 대체되는지를 설명할 수 있을 것이다. 이 연구는 언어 변화의 선택 이론을 영 모형(null model)에 대해 시험하는 방법론을 제시하며, 언어 진화에 있어 그간 잘 인지되지 않던 확률성의 역할을 드러낸다.

<네이처>에 실린 뉴스글이다. 내 전공을 살려 오랜만에 화학 이야기를 번역해 본다. 속도맵 이미징 기법은 학부 때 있었던 연구실에서 다뤘던 기법이고, SN2와 E2은 유기화학 1 들을 때 유일하게 재미있었던(...) 파트였기에 이 연구는 왠지 정이 간다.

물리화학: 반응 메커니즘의 지문 채취하기

초록
분자 구조의 조그마한 변화도 화학 반응의 양태를 바꿀 수 있지만, 반응 메커니즘을 직접 연구하는 것은 어려운 일이다. 경쟁하는 메커니즘들에 대해 직접적인 이해를 제공하는 이미징 기법이 돌파구가 될 수 있을 것이다.

본문
화학자들은 지난 수십 년간 화학 반응을 샅샅이 쪼개 반응의 각 단계를 이해해 왔다. 반응의 정확한 메커니즘, 예를 들어 화학 결합이 만들어지고 쪼개지는 순서를 아는 것은, 결과물을 예측하고 분자 및 물질을 설계하며 새로운 화학을 발견하는 초석이 된다. 반응 메커니즘을 결정하기 위해서는 대개 간접적인 관측에서 얻은 다양한 정보를 결합해야 하기에, 짐작과 추리가 모두 필요하다. Carrascosa et al.1은 <네이처 커뮤니케이션즈(Nature Communications)>에 속도맵 이미징(velocity-map imaging)이라 불리는 기법을 사용하여 하나의 메커니즘도 아니고 서로 경쟁하는 두 메커니즘을 직접적으로 시각화했음을 보고했다.

저자들은 탄소 원자에 붙어 있는 X 반응기가 (음이온 Y-으로 반응에 등장하는) Y 반응기로 대체되는 치환 반응에서 시작했다(그림 1). 이 과정을 일컬어 SN2 메커니즘이라 부르고, 이는 유기화학에서 가장 많은 연구된 메커니즘 중 하나이다. 이 반응의 본질은 X와 Y 중 누가 탄소 원자에 더 강한 결합으로 붙는지를 겨루는 경쟁이라 할 수 있다. 만약 Y가 더 강한 결합을 만든다면 X를 대체한다.

[그림 1] SN2 반응 메커니즘

탄소 원자에 결합한 X 반응기가 (Y- 이온으로 등장하는) Y 반응기로 대체되는 치환 반응은 SN2 메커니즘으로 일어날 수 있다. 반응물 Y-는 탄소 원자 기준으로 X의 건너편 방향으로 다른 유기 반응물에 접근하고, C-Y 결합은 부분적으로 형성되고 C-X 결합은 부분적으로 분해된 전이 상태를 통과한다. 탄소 원자에 붙은 세 개의 치환기(여기서는 수소 원자)는 반응에 직접 참여하지 않으며, 마치 우산이 뒤집히는 것과 같은 기하 반전(geometrical inversion)을 일으킨다.

SN2 메커니즘은 1930년대에 영국 화학자 Christopher Ingold에 의해 처음으로 자세히 연구되었다2. 이 연구는 많은 양의 추리를 필요로 했으며 여러 조건 하의 다양한 치환 반응을 관찰하여 얻은 두 가지 핵심적인 관찰에 기반을 두고 있었다. 첫 번째는, 반응 속도가 두 반응물 모두의 농도에 의존한다는 것이었다. 이는 두 반응물이 메커니즘의 가장 느린 단계(역자 주: 흔히 속도결정단계 rate-determining step라 부른다)에 개입한다는 의미이다. 두 번째로, 생성물 분자의 구조는 유기 반응물의 구조에 대해 항상 뒤집혀 있었다. 이로부터 Y와 X가 탄소에 붙는 결합이 형성되고 분해되는 것이 두 단계로 일어나는 것이 아니라 동시에 일어나며, Y-가 X의 반대 방향에서 탄소 원자에 접근한다는 것을 알 수 있다. 이 과정 중에, 반응에 직접 참여하지 않는, 탄소 원자에 붙은 세 개의 치환기는 마치 우산이 뒤집히는 것과 같은 기하 반전(geometrical inversion)을 일으킨다.

Ingold의 방법론은 다소 간접적이었으나, Carrascosa et al.과 같은 연구실 출신의 연구자들이 2008년에 밝혀낸 바3에 따르면 기체 상태에서 SN2 메커니즘을 연구함으로써 좀 더 직접적인 통찰을 얻을 수 있다. 이 접근법에서, 두 반응물은 분리된 기체 분자살(molecular beam) 형태로 발사되어 서로 교차하는데, 이 교차점에서 반응이 일어난다. 분자살을 사용함으로써 반응에서 사용할 수 있는 에너지와 반응물의 속도가 정교하게 조절될 수 있다. 생성물이 산란되는 방향 또한 속도맵 이미징 기법으로 측정될 수 있으며, 그 결과로 얻은 이미지는 반응 메커니즘의 직접적인 '지문(fingerprint)'이 된다.

Carrascosa와 동료들은 이 접근법을 사용하여 일련의 치환 반응을 연구하였다. 이들은 아이오딘화 메틸(CH3I)의 아이오딘 원자가 염소 원자로 대체되는 간단한 경우에서 시작했다. 저자들은 SN2 메커니즘에서 기대되는 바와 같이, 이 반응에서 생성된 아이오딘화 이온(I-)이, 입사된 염화 이온(Cl-)이 온 방향과 거의 완전히 같은 방향으로만 산란되었음을 관찰했다(그림 2a). 게다가, 반응 생성물은 에너지적으로 허용되는 가장 빠른 속도에 근접한 속도로 날아갔는데, 이는 들어오는 Cl-의 운동 에너지는 반응에 필요한 만큼을 제외하고는 거의 그대로 생성물 I-의 운동 에너지로 전환되었음을 의미한다. 즉, 생성물의 진동이나 회전으로 흩어진 에너지는 아주 극소량이라는 것이다.

[그림 2] SN2와 E2 반응 메커니즘의 속도맵들

a. 이 도표는 Carrascosa et al.1이 기체 상태에서 염화 이온(Cl-)을 아이오딘화 메틸(CH3I)과 반응시키는 실험을 5만 번 반복하여 얻은 아이오딘화 이온(I-) 생성물의 속도 분포를 보여준다. 색깔은 도표의 각 구역에서 관측된 I- 이온의 개수를 정규화한 값이며, 0(암청색)부터 최댓값(암적색)까지를 표현한다. 충돌은 그림의 중심에서 일어나며, vxvr은 각각 반응물의 경로에 평행한 속도 성분과 수직한 속도 성분을 나타낸다. 각 픽셀의 위치는 생성물의 속도(중심으로부터 가장 멀리 위치한 픽셀은 가장 빠른 속도에 대응)와 산란각을 보여준다. 백색 화살표는 처음에 반응물이 접근하는 방향을 가리킨다. 이 속도맵은 I- 이온이, 입사된 Cl- 이온이 온 방향과 거의 완전히 같은 방향으로만 산란되었음을 보여주며, 이와 같은 패턴은 전반적으로 SN2 반응의 특징이다. 적색 점선 원은 검출된 SN2 반응의 생성물 I-가 에너지적으로 가질 수 있는 최대 속도를 나타낸다. b. 저자들이 아이오딘화 메틸을 아이오딘화 에틸(CH3CH2I)로 대체했을 때 I-의 속도맵은 눈에 띄게 변화하였는데, 이는 (E2 제거 반응으로 알려진) 다른 종류의 반응이 일어났음을 나타낸다. 백색 점선 원은 E2 반응의 생성물 I-가 에너지적으로 가질 수 있는 최대 속도를 나타낸다.

SN2 메커니즘의 지문을 만들어낸 후, Carrascosa et al.은 좀 더 흥미로운 작업을 시작했다. 다른 반응물을 수반하는 비슷한 과정들에 대해 이미지를 얻어낸 것이다. 예를 들어, 아이오딘화 메틸의 수소 원자 중 하나가 메틸기로 대체되었을 때(즉 아이오딘화 에틸 CH3CH2I의 경우에), SN2 메커니즘이 일어나는 것은 여전히 가능해야 한다. 하지만 저자들은 이 반응의 산란 분포(그림 2b)가 아이오딘화 메틸의 반응에서 기록된 분포와 전혀 닮지 않았음을 발견했다. 생성물은 반대 방향으로 산란되었고, 가장 강력한 산란이 일어난 곳은 그림의 중심에 훨씬 가까웠다.

이 예제는 화학의 흔한 문제를 보여준다. 반응물의 화학적 복잡성이 가장 간단한 경우 너머로 증가하기 시작하면, 종종 두 가지 이상의 반응 양태가 가능해지는 것이다. 아이오딘화 에틸과 염소의 경우, 경쟁하는 반응은 E2 제거 반응으로, Cl-가 수소 원자를 메틸기에서 떼어내 염화수소(HCl)를 형성하고, 그 결과로서 해당 유기 반응물의 전자가 재배치되면서 두 탄소 원자 사이에 이중 결합이 형성되고, 결국 에틴(CH2=CH2)이 만들어지면서 I-는 떨어져 나간다. SN2 메커니즘과 마찬가지로, 이 과정은 결합 형성과 분해가 동시에 일어나는 단일 단계 과정이다.

Carrascosa et al.은 SN2와 E2 메커니즘 간의 경쟁을 자세히 연구하기 위해, 다양한 조건 하에서 비슷한 반응들을 여럿 살펴 보았다. 그들이 개발한 직접 시각화 방법 덕분에 그들은 E2 메커니즘에 최소한 두 가지 종류가 있음을 발견하였다. 이들은 반응물 할로젠 이온이 이탈기 할로젠 이온과 같은 방향으로 유기 반응물에 접근하는지 다른 방향으로 접근하는지에 따라 달라진다.

모든 기체상 방법론들과 마찬가지로, 이 저자들의 접근법은 용매 분자들이 반응 메커니즘에 미치는 영향에 대해서는 직접적인 정보를 주지 않는다. (실제로 유기 반응들은 거의 항상 용액상에서 일어난다.) 하지만, 만약 Carrascosa et al.의 실험과 같은 실험들이 용액상에서 일어나는 반응들에 대한 연구와 접목되면, 그 결과로 반응물 효과와 용매 효과를 분리해내는 새로운 방법을 얻을지도 모른다.

또한 이 저자들의 기법으로 연구할 수 있는 반응의 복잡도에는 (아직 정확히 알려져 있지는 않지만) 한계가 존재한다. 이는 부분적으로 분자 크기가 커짐에 따라 데이터를 해석하는 것이 더 복잡해지기 때문이나, 또한 큰 분자들을 기체 상태로 만드는 것이 무척 어렵기 때문이기도 하다. 전체적으로 연구하기에는 너무 복잡한 반응의 경우, 간단하게 만든 모델 시스템을 살펴봄으로써 유용한 통찰을 얻을 수도 있다. 그럼에도 불구하고, 이 새로운 연구는 메커니즘 연구 기법 가운데 초석을 놓는다. 예를 들어, 이 접근법은 부피가 큰 원자단이 분자의 일부를 가릴 때 나타나는 입체 장애 효과 때문에 반응 메커니즘이 변하는 것을 살펴볼 때 사용될 수 있으며, 또한 여러 단계를 거쳐 일어난다고 알려져 있는 반응들이 실제로 그러한지 연구할 때 사용될 수도 있을 것이다.
나는 중딩 시절에 김재관 교수님이 번역하신 입자물리학 교양서(?)를 읽고 입자물리학의 매력에 빠졌으나, 대학교 4학년에 되어 정작 그 수업을 들어보니 도무지 내용조차 이해를 할 수 없어 포기한 바가 있다. 그래도 막연한 관심은 남아 있던 차에 <네이처>에 이런 리뷰가 실렸기에 초록과 서론을 번역해 본다.

표준모형을 만들고 부수는 맛깔 변환 중성류

초록
입자물리학의 표준모형은 기본 입자들과 그들의 상호작용에 대한 현존하는 최고의 이론이나, 불완전한 부분이 있는 것으로 알려져 있다. 아직 발견되지 않은 입자들과 상호작용들이 존재할 수 있기 때문이다. 새로운 입자들을 찾기 위한 가장 강력한 방법 중 하나는 소위 맛깔 변환 중성류(flavour-changing neutral current) 붕괴라 불리는 과정을 연구하는 것으로, 이 과정 중에 쿼크의 전하는 바뀌지 않고 맛깔만 바뀐다. 이러한 변화의 한 가지 예로 맵시 쿼크(beauty quark)가 기묘 쿼크(strange quark)로 붕괴하는 현상이 있다. 여기서 우리는 이러한 붕괴 과정에 있는 몇 가지 흥미로운 이상현상을 되짚어 본다. 이들은 표준모형 안에 존재하는 균열을 드러냈고, 이는 그 너머에 우리가 알지 못하는 현상이 존재한다는 것을 암시한다.

서론
입자물리학의 표준모형은 기본 입자들의 성질과 상호작용을 설명하는데 놀랍도록 성공적이었던 이론으로, 그 예측값들은 엄청난 정확도로 실험적으로 확인된 바 있다. 하지만, 우주 내 암흑물질의 겉보기 비율과 물질 쪽으로 심하게 치우쳐 있는 물질-반물질 비율에 대한 우주론적 관측 사실들로부터, 표준모형 이론이 완전하지는 않다고 생각할 수 있다. 또한, 표준모형은 알려진 기본 입자들의 질량 사이의 패턴을 설명할 수 없다. 따라서, 실험 입자물리학의 최근 목표 중 하나는 새로운 입자들과 상호작용들을 발견하여(보통 '새로운 물리학 new physics'이라고 불린다) 이러한 관찰 사실들을 설명하는 것이다.

이 새로운 입자들을 찾는 일은 두 가지 방법으로 이루어진다. 첫 번째 방법은 높은 에너지의 양성자살(proton beam) 혹은 전자살(electron beam)을 충돌시켜 직접적으로 새로운 입자들을 만들어내는 것이다. 이 새로운 입자는 결국 알려진 표준모형 입자들로 붕괴하고, 이 입자들의 성질이 입자물리학 검출기로 측정된다. CERN에 있는 대형 하드론 충돌기(Large Hadron Collider; LHC)의 ATLAS와 CMS 공동연구가 이렇게 전례 없는 에너지와 세기로 양성자살을 충돌시켜 새로운 입자들을 만들어내는 실험의 예이다.

두 번째 방법은 표준모형으로 정확하게 기술될 수 있는 (쿼크로 구성된) 하드론들의 알려진 붕괴 과정의 성질을 정확하게 측정하는 것으로 이루어진다. 이 경우, 케이온(기묘 쿼크를 포함하는 하드론)이나 b 하드론(맵시 쿼크를 포함)의 붕괴처럼 약한 상호작용(weak interaction)을 통해 이루어지는 과정들이 특별히 흥미롭다. 양자장 이론의 귀결로서, 이러한 붕괴 과정은 붕괴하는 입자로부터 얻어낼 수 있는 질량-에너지보다 큰 물리 질량을 갖고 있는 순간적 입자(transient particle)들을 통해 이루어질 수 있다. 이 순간적 입자들은 '가상' 입자(virtual particle)로 불린다. 만약 이 새 입자들이 충분히 무겁다면 붕괴율과 붕괴 산물의 움직임에 대한 표준모형의 예측과 실험값 사이에 큰 오차를 만들어낼 수 있다. 따라서 이러한 양들의 정확한 측정값은 LHC의 현재 가능한 충돌 에너지보다 훨씬 큰 질량을 가지고 있는 표준모형 너머의 입자들에 달려 있다. LHC에서 진행 중인 LHCb 실험은 알려진 붕괴 과정들의 성질을 정확히 측정함으로써 새로운 물리학을 탐색하는 실험의 한 예이다.


+ 최신 글